I. 서 론

최근 새로운 과학기술의 발달로 자기다중박막 자기 분야의 신소재를 비롯하여 XMCD(X-ray Magnetic Circular Dichroism), MFM(Magnetic Force Microscope) 등 자성분석방법들이 빠르게 개발되고 있고, 정보화 사회의 출현과 함께 자기기록에 대한 중요성이 증대되면서 자기 분야에 대한 연구는 새로운 시대를 맞이하고 있다고 할 수 있다. 자기 현상의 근본 원리 규명에 대한 연구는 재료과학 또는 고체물성 연구과학에서 가장 오래 역사를 지닌 문제중 하나라고 할 수 있다. 자연계에 존재하는 저온은 기초적으로부터 인간에게 알려진 것으로 기록되어 있고 그후 오랫동안 나침반으로 사용되어 왔다. 하지만 저온의 원리에 대한 규명은 양자역학이 생기고 전자의 스플릿 현상이 도입된 20세기 초에서야 시작되었다. 그러나 현재까지도 자기 현상의 주요 기본적인 개념만 알려진 상황이고, 금속, 반도체 또는 화합물들에서 얻어지는 다양한 자기 현상을 일관성 있게 설명하는 완전한 이론의 정립은 아직도 도전적인 문제라고 할 수 있다.

주기율표에서 자성은 따로 있는 물질은 Cr, Mn, Fe, Co, Ni 등의 3d 전자를 갖는 전자가 금속과 4f, 5f 등의 전자를 갖는 흰토, 악티나이드(actinides) 물질들, 또는 이들의 화합물들에서만 관측된다. 따라서 자성이 왜 3d나 4f 전자들에서만 존재하기는 하는 것을 이해하는 것이 자기 현상에 대한 규명의 첫 걸음이 될 것이다. 이들 전자의 큰 특징은 하나로 다른 전자들에 비하여 계획에 (localized) 되어 있다는 것이다. 즉 전하밀도가 높은 곳에서 분포되어 있어 인공 전자에 위치한 전자들의 자기 상호작용이 존재하기 때문이다. 이러한 상황에서 전자의 스플릿 현상의 교환 상호작용 효과가 커지고 이로 인하여 스플릿 현상이 빠르게 나타나자 자기 현상을 이해하는 것이 매우 중요하다. 전자 금속의 자성은 대부분 3d 전자의 스플릿의 정밀에 기여하지만 회로, 악티나이드 물질들에서는 전자의 스플릿뿐만 아니라 계도 작용항에 의해 자기모멘트도 중요하여 이들간의 spin-orbit 상호작용도 고려하여야 하기 때문에 문제가 더욱 복잡하게 된다.

본고에서 우리는 금속 자성을 이해하기 위한 기본적인 이론들을 살펴보고자 한다. 우선 자기 현상을 기술하는 모델 Hamiltonian들은 Heisenberg 모델과 Hubbard 모델을 소개하고 이들로부터 유도되는 스플 MainWindow을 이해하기도 한다. 스플 자가주수율의 성질로부터 자기 불안정성현상을 판단하는 Stoner모델을 소개하고 RKKY 상호작용에 대하여 알아본다. 또한 저온을 둘 이론의 논문들은 금속배에 존재할 때 관측되는 Kondo 현상과 Anderson 모델에 대해 간단히 알아보기로 하자.

II. Heisenberg 모델

자기 현상은 스핀이나 자유주동량등의 자기모멘트들의 경점에서 이루어지는 이러한 정점은 자기모멘트간의 상호작용이 존재하여 일어난다. 사실 이러한 상호작용은 전자간 Coulomb 상호작용에 기인한다. 양자역학을 만든 사람들 중의 하나인 Heisenberg에 의하여 고대전자는 자기 결합을 주는 상호작용은 바로 전자간 콜롬브상호작용 이론이 밝혀졌다. Heisenberg 모델은 다음과 같은 해밀토니안으로 주어진다.

\[H = -\sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j \]

(1)

이 여기서 \(J_{ij} \) 는 전자간 전자간 콜롬브 상호작용이 \(S_i \) 와 \(S_j \)는 각각 \(i, j \)전자의 스플릿한 분리점이다.1 Heisenberg 모델에 의하면 동일한 전자가 함께 있는 경우 스플릿 현상이 현저하게 나타난다. Heisenberg 모델에 의하여 평가를 내어보면서 스핀들의 양자역학적 장애의 최선의 효과가 나타나며 전자가 스플릿 현상이 일어난다. 보통 \(J_{ij} > 0 \)이므로 위치가 달라지거나 유지가 존재하는 경우와 같은 해밀토니안으로 정의된 경우에 스핀들이 서로 같은 방향으로 정렬될 때 얇은 액체물질 갖게 되
으로 강자성 효과가 기술하게 된다. Heisenberg 모델에서는 전자의 운동은 무시한다. 따라서 이 모델은 $4f$, $5f$ 등의 혼합된 전자를 갖고 있는 부드체에서 보이는 자성 현상을 기술하는 모델이다.

III. Hubbard 모델

\[
H = \sum_{<ij>} t_{ij} c_i^+ c_j + \frac{U}{2} \sum_{i} n_{i \uparrow} n_{i \downarrow} \tag{2}
\]

임의의 체색상은 전자가 원자위치 i에서 j로 이동할 때의 움직임에 해당하고, t_{ij}를 hopping 파라미터라 부른다 ($c_{i \sigma}$는 전자의 생성, 소멸 연산자로, 여기서 hopping 파라미터의 크기는 에너지 레벨을 결정하여 준다. 돌행은 전자간 Coulomb 상호작용에 해당하는데 원자위치 i에서 등\hfill\hfill\hfill\hfill\hfill\hfill\hfill\hfill

\[
H = -\sum_{<ij>} J_{ij} S_i \cdot S_j \tag{3}
\]

위치하는 두 전자간 교환 상호작용 J_{ij}로부터

\[
H_s = 2 \sum_{<ij>} \frac{J_s}{U} \bar{S}_i \cdot \bar{S}_j \tag{4}
\]

을 유도되는 부드체에 대한 Heisenberg Hamiltonian을 고려하여야 한다. Heisenberg Hamiltonian은 고려하여야 하는 $U = \infty$ 조건을 만족하여 U가 큰 경우의 성질을 생각하여 보자. 이때 hopping에 기여하여 t_{ij}의 효과를 포함하여야 한다. 이 운동 에너지 효과를 2차작용까지 고려할 때 생기는 Hamiltonian이 바로 다음과 같은 초소환(spin-exchange) 상호작용이다[1].

\[
H_s = 2 \sum_{<ij>} \frac{J_s}{U} \bar{S}_i \cdot \bar{S}_j \tag{4}
\]

초소환 상호작용은 Heisenberg Hamiltonian의 직접적인 교환 상호작용에 비하여 간접적인 교환 상호작용이란 수 없다. 또한 상호작용 파라미터 ($J_s = \frac{2\mu_s H}{U}$)가 큰 경우에 대해 스핀 방향이 서로 반대로 정립되어있는 반강자성의 경우가 더 많고 에너지가 가짐에 유의하라. MnO, MnF$_2$와 같이 이론적 절점성은 큰 부드체 전자공극 특성에서의 반강자성은 이 Hamiltonian으로 기술되다고 일반적으로 믿어진다. 초소환 상호작용은 고온 조전도성의 저온에서 초전도현상을 기술할 때 많이 언급되는 $t = J$ 모델에서의 J-Hamiltonian 항에 해당한다.

IV. Stoner 모델

앞에서 $3d$ 전자공극에서의 자성 현상은 전자의 전도성과 흐로 고려한(itinerant) Hubbard 모델로 잘 기술될 수 있다. 사질 전자공극은 이러한 itinerant 성질 때문에 에너지 페어론으로 잘 설명되어 있다. Fig. 1. (a)와 같은 간단한 모델을 갖는 초소환 상의 상대적 eos을 생각하여 보자. 이러한 상황에서는 Fermi 족위까지 체전한 스플러 \uparrow, \downarrow의 전자 세수가 값을 모토메트의 값은 0이다. 여기에서 자기장 H의 경우, Zeeman 효과에 의해 스플러 \uparrow, \downarrow의 세수가 서로 $\mu_s H (\mu_s: Bohr magneton)$ 만큼 움직이게 된다. (Fig. 1. b)와 같이 상대밀도 변화가 분격적이다. 상호작용이 없는 $U = 0$인 경우, \uparrow, \downarrow의 에너지 차이 ΔS는 $2\mu_s H$가 되고 스플러 \uparrow, \downarrow의 전자 세수가 각각 자기모토메트의 크기 $M = 2\mu_s H N (E_F)$가 된다 ($N(E_F)$는 Fermi 족위에서의 스핀당 상태 수의 점적 소성의 경우에 대한...
밀도) 여기서 푸리 스피어 경구물의 정의 $M = x_p H$을 사용하면 상자성 상태의 스피어 경구물 $x_p = 2\mu_s^2 N(E_F)$을 얻게 된다. 이를 Pauli 스피어 경구물이라 부른다. Pauli 스피어 경구물은 전자간 콜럼 상관상호작용이 비교적 약한 s, p 전자들 간의 상자성 금속의 스피어 경구물은 잘 설명한다.

이 Pauli 스피어 경구물은 Kubo의 선형반응 이론을 사용하여도 구할 수 있다[3]. 결과식만을 소개하면 상호 작용이 없는 때 ($U = 0$)의 스피어 경구물, $x_s(q, \omega)$는

$$x_s(q, \omega) = 2\mu_s^2 \sum_k \frac{\langle n_{k+q} \rangle - \langle n_k \rangle}{\omega - (\epsilon_{k+q} - \epsilon_k)}$$

(5)

와 같이 계산된다.

여기서 n_k는 k-state의 평균 occupation의 number이고 ϵ_k는 전도전자의 에너지 범위이다. 이 상자성 스피어 경구물은 $\omega = 0$, $q = 0$일 때 Fermi 준위에서의 상태밀도 $N(E_F)$를 추정하여

$$x_s(0, 0) = 2\mu_s^2 N(E_F)$$

(6)

의 Pauli 스피어 경구물이 된다. 즉 Pauli 스피어 경구물은 일반적인 스피어 경구물 식(5)의 특별한 경우라 할 수 있다.

그럼에도 전자간 상호작용을 고려하였을 때의 스피어 경구물의 상호 작용을 살펴보자. $U \neq 0$인 경우의 스피어 (1), (1)는 자기장에 의한 Zeeman 효과뿐만 아니라 U의 효과 때문에 에너지 차이가 $\Delta = 2\mu_B H + UM/\mu_B$가 주어진다. 즉 자기포텐셜의 크기 M은 ($2\mu_p^2 H + UM$)N(E_F)가 되고 따라서 스피어 경구물은

$$x(q, \omega) = \frac{x_p}{1 - UN(E_F)}$$

(7)

로 주어진다. 이렇게 주어지는 스피어 경구물은 위에서 본 마가 일신했던 이론으로 각 일반적인 스피어 경구물

$$x(q, 0) = \frac{x_s(q, 0)}{1 - \frac{U}{2\mu_s^2} x_s(q, 0)}$$

(8)

에서 $\omega = 0$, $q = 0$일 때의 특별한 경우에 해당한다[3].

식(8)에서 $\omega = 0$, $q = 0$일 때를 생각하면 스피어 경구물은

$$x(q, 0) = \frac{x_s(q, 0)}{1 - \frac{U}{2\mu_s^2} x_s(q, 0)}$$

(9)

가 된다. 이 식에서 우리는 우변의 분모가 0이 되면 $x(q, 0)$가 발산하게 될을 알 수 있다. 만약 계의 $x(q, 0)$가 특정한 $q = q_c$에서 발산할 때 자기적 불안정성(magnetic instability)이 있게 된다. 만일 $x(q)$가 $q = 0$에서 발산할 경우 가상성(ferromagnetic) 불안정성이 있고 $q \neq 0$에서 발산하면 스피어 밀도파(spin density wave)의 불안정성이 있다. 특히 $q_c = \frac{\pi}{a}$일 때는 반강자성 상태의 불안정성이 해당한다(G : reciprocal lattice vector). 반강자성 특성은 갖는 크의 경우가 비로, 이러한 경우가 잘 있다.

강자성 불안정성의 경우, 즉 $q = 0$일 때는 식(6)으로부터

$$x(0, 0) = \frac{x_p}{1 - UN(E_F)}$$

(10)

와 같이 되고 만일

$$UN(E_F) \geq 1$$

(11)

이면 강자성 불안정성이 있음을 알 수 있다. 이러한 조건 을 Stoner 기준[4]이라 한다. 예를 들어 강자성 물질인 Fe, Co, Ni 등의 합에서 연금하였듯이 3d 전자가 다른 전이금속들에 비해 국세되어 있어 혹은 특의 3d 에너지 볼록에 갖는다고 Fermi 준위에서 큰 상태밀도 $N(E_F)$를 갖는다. 따라서 $UN(E_F) \geq 1$의 조건은 반복하게 되고 강자성을 갖게 되는 것이다.

V. RKKY 상호작용

최도류 금속학감이나 화합물에서의 국제 스피어간의 자

\[x = \frac{x_p}{1 - UN(E_F)} \]

로 주어진다. 이렇게 주어지는 스피어 경구율은 위에서 본 마가 일신했던 이론으로 각 일반적인 스피어 경구율

\[x(q, \omega) = \frac{x_s(q, \omega)}{1 - \frac{U}{2\mu_s^2} x_s(q, \omega)} \]

에서 $\omega = 0$, $q = 0$일 때의 특별한 경우에 해당한다[3].

식(8)에서 $\omega = 0$, $q = 0$일 때를 생각하면 스피어 경구율은

\[x(q, 0) = \frac{x_s(q, 0)}{1 - \frac{U}{2\mu_s^2} x_s(q, 0)} \]

가 된다. 이 식에서 우리는 우변의 분모가 0이 되면 $x(q, 0)$가 발산하게 될을 알 수 있다. 어떤 계의 $x(q, 0)$가 특정한 $q = q_c$에서 발산할 때 자기적 불안정성(magnetic instability)이 있게 된다. 만일 $x(q)$가 $q = 0$에서 발산할 경우 가상성(ferromagnetic) 불안정성이 있고 $q \neq 0$에서 발생하면 스피어 밀도파(spin density wave)의 불안정성이 있다. 특히 $q_c = \frac{\pi}{a}$일 때는 반강자성 상태의 불안정성이 해당한다(G : reciprocal lattice vector). 반강자성 특성은 갖는 크의 경우가 비로, 이러한 경우가 잘 있다.

강자성 불안정성의 경우, 즉 $q = 0$일 때는 식(6)으로부터

\[x(0, 0) = \frac{x_p}{1 - UN(E_F)} \]

와 같이 되고 만일

\[UN(E_F) \geq 1 \]

이면 강자성 불안정성이 있음을 알 수 있다. 이러한 조건 을 Stoner 기준[4]이라 한다. 예를 들어 강자성 물질인 Fe, Co, Ni 등의 합에서 연금하였듯이 3d 전자가 다른 전이금속들에 비해 국세되어 있어 혹은 특의 3d 에너지 볼록에 갖는다고 Fermi 준위에서 큰 상태밀도 $N(E_F)$를 갖는다. 따라서 $UN(E_F) \geq 1$의 조건은 반복하게 되고 강자성을 갖게 되는 것이다.

V. RKKY 상호작용

최도류 금속학감이나 화합물에서의 국제 스피어간의 자
기 상호작용은 존재 RKKY 상호작용으로 기술하기도 한다. RKKY 상호작용은 국제 스피인간의 거리가 멀어 Heisenberg 모델에서의 직접적인 교환 상호작용은 있으나 국제스핀들 사이에 존재하는 전도전자들에 미치고 하는 간접적인 교환 상호작용이 가능한 때 일어난다. 즉 한 스피인이 전도전자를 분극시키고 이 전도전자들이 멀리 떨어져 있는 다른 스피인에 영향을 미친다고 하면 간접적으로 두 국제스핀간에 상호작용이 존재하게 되는 것이다.

전이 원소나 화소물 원소나 같이 국제 스피인을 갖는 붐 스피오들이 s, p 전도전자들을 갖는 금속에 존재할 때의 상황을 생각하자, 이 때의 Hamiltonian은

\[H = \sum \epsilon_s c_s^\dagger c_s + H_{s-d} \]

(12)

이와 같이 낼 수 있는 데 우변의 첫째 항은 모금속의 전도 전자의 운동에너지 항이고 둘째항은 국제스핀(보통 d나 f-전자)과 전도 전자(보통 s-전자)간의 교환 상호작용으로 다음과 같이 주어진다.

\[H_{s-d} = -J \sum_{ij} \vec{S}_i \cdot \vec{\sigma} (\vec{R}_i) \]

(13)

여기에 \(\vec{S}_i \)는 \(i \)-원자에 위치하는 붐스핀의 국제 스피인을 나타내고 \(\vec{\sigma} \)는 전도 전자의 스피인을 나타낸다. 위의 행렬은 \(\vec{R}_i \)의 위치에 \(J \vec{\sigma} \)의 크기가 갈려 있어 전도 전자의 스피인에 영향을 주는 형태를 띠고 있다. 이 자기장의 Fourier 변환,

\[H(q) = J \vec{S}_j e^{-iqr} \]

(14)

을 생각하자. 그러면 이 자기장에 의하여 전도전자의 스피인도, 즉 자기모멘트는

\[M(r) = \sum_q M_q e^{iqr} = \frac{1}{V} \sum_q \chi_q(q) H(q) e^{iqr} = \frac{J \vec{S}_j}{V} \sum_q \chi_q(q) e^{iqr} - \vec{R}_j \]

(15)

와 같이 분극된다. 여기서 \(\chi_q(q) \)는 열정에서 구한 상호작용이 없는 경우의 전도전자의 스피인감수율이다. 모금속의 전도전자는 상호작용이 없다고 가정하였으므로 이는 타당하다 하겠다. 위 식을 보면 전도전자들의 스피인 자기모멘트의 크기는 스피인감수율 \(\chi_q(q) \)의 Fourier 변환으로 주어질 수 있다.

\(\chi_q(q) \)의 Fourier 변환식 \(F(r) \)을 계산하면

\[F(r) = \frac{1}{V} \sum_q \chi_q(q) e^{iqr} = \frac{6\pi N}{V} N(E_F) \]

\[\sin(2k_F r) - 2k_F r \cos(2k_F r) \]

\[(2k_F r)^3 \]

(16)

와 같이 된다[5]. 여기서 \(k_F \)는 전도전자의 Fermi momentum이며 모금속밀도의 전동 주기를 결정하게 된다. 따라서 \(\vec{R}_j \)에 국제 스피인을 갖는 \(s, p \) 전도전자들의 스피인 모드는 붐스핀에서의 거리에 따라 진동하는 형태를 갖는다. 이러한 진동 형태는 Ruderman-Kittel [6], Kasuya [7], Yosida [8] 등에 의하여 유도되어 있음 RKKY 진동이라 부른다. RKKY 진동은 금속에 전하를 가진 붐 스피오들이 존재할 때 그 주위에 붐스핀 전하를 가리키하 여 모여드는 전자 밀도의 진동을 나타내는 Friedel 진동 [9]과 같은 형태를 갖고 있다.

만일 \(\vec{R}_j \)에 다른 국제 스피인가 존재하면 이 전도전자들 의 진동이 그 국제스핀에 영향을 줄 것이다. 즉

\[H_{s-d} = -J \vec{F}(\vec{R}_j - \vec{R}_i) \vec{S}_i \cdot \vec{\sigma}_j \]

(17)

와 같이 되어 Fig. (2)과 같이 두 국제스핀간을 전도전자 들이 간접적으로 상호 작용하게 만드는 효과를 주게 되는 데 이러한 상호작용이 바로 RKKY 상호작용이다. RKKY 상호작용은 거리 \(\vec{R}_j - \vec{R}_i \)에 따라 주기적으로 진동 하는 것이 유의하하다.

Fig. 2. 국제스핀간의 RKKY 상호작용.

최근 자기 분야에서 관심의 촉진이 되고 있는 자성/비 자성 전이모음 논리자기장 다층막에서 보이는 진 동 교환상호작용(oscillatory exchange interaction) 현 상도 이러한 RKKY 상호작용에 기인할 것으로 예상된다. 하지만 다층막의 복잡한 전자구조와 그에 따른 다양한 Fermi면, 2차원적 결정구조 등이 교환상호작용에 미치는 효과에 대해 보다 심도있는 고찰이 필요한 상황이 다.
VI. Anderson 모델과 Kondo 현상

최근 물성 분석 분야에서 큰 관심의 대상인 고온 초전도체를 비롯하여 혼합 원자와, heavy Fermion 물질들은 보통 강간자 계계(sterically correlated electron system)라고 불리우며 국제화 성장을 갖는 d 또는 f 전자들에 의한. 이에 따라 d 전자들은 여러 가능한 혼합 상태에 대한 연구가 활발히 진행되고 있다. Anderson Hamiltonian의 정량화는 아직 불가능한 문제의 고급까지 여러 종류의 군사방법이 고려되어 있다. [10]

비슷한 상태의 모델, 즉 s 또는 p 전자들로 이루어져 비교 적 낮은 에너지에서 볼 수 있는 경우(예를 들면 Cu, Au등에 자성 불순물(예를 들어 Fe, Co, Ni등과 같이 다르게 혹은 d 전자들을 갖는 불순물들)의 특성에 빌어져 많은 물리 현상 기술하기 위해서 Anderson은 약 30여 년 전에 다음과 같이 간단하게 보이는 모델 Hamiltonian을 제시하였다. [11]

\[
H = \sum_{\gamma} \epsilon \nu_{\gamma} n_{\gamma} + \sum_{\gamma \neq \alpha} (V_{\gamma \alpha} c_{\gamma}^{\dagger} c_{\alpha} + V_{\alpha \gamma} c_{\alpha}^{\dagger} c_{\gamma}) + \epsilon_{d} \sum_{\alpha} n_{\alpha} + U n_{d1} n_{d1}
\]

(19)

여기서 계면형은 에너지 상태 ϵ_{ν}를 갖는 모순한 전도전자들의 운동에 대하여 제품의 모순한 전도전자들의 불순물과 직접적인 상호작용(hyridization interaction: $V_{\gamma \alpha}$)을 표현하면서, 하에, 계면형은 각각 불순물과 전도 전자가 에너지 상태 ϵ_{ν}와 불순물과 전도전자간 공통 상호작용 U를 포함한다. $c_{\nu \alpha}, c_{\nu \alpha}^{\dagger}$는 각각 d자중 액자와 s 혹은 d 혹은 모순한 전도전자들의 생성, 소멸, (number) 연산자들로 나타내며, $c_{\nu \alpha}^{\dagger}$는 불순물 전도전자들의 생성, 소멸, 수·연산자에 해당한다. 이와 같이 Anderson 모델은 전도전자가의 두 종류 전자의 자유도를 고려하려는 점에서 Hubbard 모델과 비슷하다. 그리고 전도전자들의 물질 상호작용을 무시하는 반면, 불순물 전도전자간 물질 상호작용은 Hubbard 모델에서와 같이 소인 양자수의 다른 두 전자판에 존재한다고 가정한다.

사실 이 물질함으로부터 추론이 되는 여러 현상이 발생하여 또한 Anderson Hamiltonian의 정량화 해를 갖기 위한 이유로 이항이 발전한 것이다. 만일 물질이 없다면 Anderson Hamiltonian은 해석적으로 정량화 전자 수 있는데, 이와 같은 Hamiltonian은 Fano-Anderson Hamiltonian 이라고도 부른다. 이 경우에는 전도전자가의 최근 전자 간의 혼합 상호작용으로 인한 국제전자의 자체 에너지를 정량화 구할 수 있는데, 자체 에너지 $\Sigma_{d}(\epsilon)$는

\[
\Sigma_{d}(\epsilon) = \sum_{\gamma \neq \alpha} \frac{V_{\gamma \alpha}^{2}}{\epsilon - \epsilon_{\gamma} + i\delta}
\]

(19)

와 같이 주어진 국제전자의 에너지 위치가 $Re\{\Sigma_{d}(\epsilon)\}$만큼 이동하고 에너지 준위의 폭이 $Im\{\Sigma_{d}(\epsilon)\}$만큼 넓히려는 공명 (resonance) 상태를 갖게 된다. 이는 국제전자와 전도전자가 서로 바꾸면서 각각의 수명 (life-time)이 줄어 들고 따라서 불확정성 원리에 의하여 불순물 에너지 준위의 넓혀짐 (broadening)이 일어나기 때문이다.

$U \neq 0$의 경우의 Anderson 모델은 불순물 자체 모멘트의 형성여부 문제 때문에 많은 관심의 대상이 되고 있으나 아직까지 정량화 해를 갖기 힘든 상태이다. Anderson의 해의 Hartree-Fock 근사해에 의하면, $V_{\gamma \alpha}, \epsilon_{\gamma}$ 등의 파라미터 크기에 따라 자기모멘트의 형성 여부가 결정된다. 즉, $U_{\gamma \alpha}$보다 큰 경우, 또한 국제전자의 에너지 준위 ϵ_{γ}와 $\epsilon_{\alpha} + U$가 Fermi 준위에 아래, 위에 대칭적으로 위치하므로 자기모멘트의 형성이 없음을 보여준다. 하지만 Hartree-Fock 근사에서는 전자간 상관 (correlation) 효과가 고려되어 있지 않아 온도 $T \to 0$일때 일어나는 전도전자의 스타크리에에 의한 국제 자기 모멘트의 보상 (compensation) 효과, 즉 Kondo 현상 [12]을 구술하지 못하던 단점이 있다. 이러한 단점을 극복하기 위하여 여러 계산 방법들이 제안되었다. [10]. 수학적적 접근 및 양자 텐서-카탈로로 방법으로 그 중의 한가지에 속한다.

Kondo 현상은 비정상한 물질에서의 스핀을 갖는 전자와 흰부 흰부 자전동의 물질을 비롯한 Fermi liquid의 성질임을 보여하며, 저항의 온도와 연관된 minimum이 존재하고, 비열에서는 peak가 존재하며, 자기감수율에서는 $T \to 0$일때 포화값을 갖는다. 이 현상은 국제스핀과 물질의 전도전자간의 상호작용에 기인한 것으로 온도존 의 고체물리의 주된 연구의 대두였다. Kondo 현상을 기술하는 Hamiltonian은 Anderson 모델에서 d-전자간의 Coulomb 상호작용 U가 $s-d$ hybridization 상호작용 $V_{\nu \alpha}$보다 매우 낮 때 Schrieffer-Wolff [14] 변환으로부터 도출할 수 있다. 형태는 양자 벡터의 보진 BABEKKY 상호작용을 기술한 때의 Hamiltonian (식 12)와 유사한 형태를 갖게 되는데 Kondo 모델에서는 모순한 물질의 국제스핀이 하나만 존재한다는 점이 다르다.
주어지는 Kondo 온도가 존재하게 된다 (D : 전도전자 에너지 너비; J : 전도전자와 외부스핀간의 반망상성 상호 작용), $T < T_K$ 일 때 전도전자와 같은온도의 밀도에서 원차성 상호작용이 중재하여 전도전자와 다른온도의 밀도에서 원차성 상호작용이 증가하게 되어 전도전자의 스핀이 외부스핀을 완전히 가리키는 (screen) 스핀 singlet 속박상태를 이루어 다. 이러한 결과는 전도 전비와 밀도전자의 구별이 없어지고 Fermi 유효에 새로운 상태일 peak가 생기며 전체적으로 Fermi liquid의 성질을 갖게 된다. 이러한 이유로 $T = 0$ 근처에서 자기장수용, 비열 등에 Fermi liquid의 특 성이 관찰되는 것이다.

Ⅶ. 몇 음월말

지금까지 살펴낸 Stoner 모델로 Fe, Co, Ni 등 금속의 기저상태 ($T = 0$)에서의 자기특성을 어느정도는 파악할 수 있다. 그러나 Stoner 모델은 몇 가지 큰 단점들을 갖고 있다. 예를 들어 Stoner 모델에서 스핀 수용율의 발견으로부터 구한 자기 전이온도, 즉 Curie 온도가 정확히 비하여 10배 이상 크다는 점과, Stoner 모델에서 구한 스핀 수용율이나 자기모멘트의 온도 의존성이 실질적으론 임의의 정적을 대하는 문제가 있다. 이들 모델은 모두 자본의 유한 온도 ($T
eq 0$)에서의 물성에 해당하는 것으로 이론을 제대로 기술하려면 계의 기저상태에서의 모든 자유도를 고려하여야 한다. 즉 유한 온도에서의 전 자간 상관 상호작용을 보다 정확하게 취급하여야 한다.

한편 금속과 부도도의 중간의 위치하는 물질계, 즉 적당한 계획된 성질과 itinerant한 성질을 공유한 전자들은 있는 물질들(예를 들어 heavy Fermion, 고온전도체 등의 강강한 전자계)의 유한온도에서의 자기 특성에 대한 이해도 매우 부족한 상황이다. 그리고 앞으로도 언급하였던 금속다공 박막에서의 자기 특성은 거대자기저항등의 제한한 현상들로 끝내야 응용면에서나, 실험, 이론적으 로 자기분야에서 매우 중요한 연구과제라 할 수 있다. 이 와 같이 자성 이론분야 연구과제는 무엇무엇하더라도 생각되며 앞으로 많은 전문가들의 노력이 정무되어야 할 것으로 본다.